
J. Chem. Sci., Vol. 117, No. 6, November 2005, pp. 677–683. © Indian Academy of Sciences. 

  677

*For correspondence 
+1 bar = 0⋅1 MPa 

Modified Pippard relationship describing the Raman frequency shifts 
of the rotatory lattice mode of ammonia solid II in the vicinity of its 
melting point 

H KARACALI and H YURTSEVEN* 
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey 
e-mail: karacali@newton.physics.metu.edu.tr 

MS received 30 September 2004; revised 14 July 2005 

Abstract. We relate in this study the thermal expansivity, αP, to the Raman frequency shift (1/ν)(∂ν/∂P)T 
for the rotatory lattice (librational) mode in ammonia solid II near its melting point. We have used our 
calculated Raman frequencies of this mode for pressures of 3⋅65, 5⋅02 and 6⋅57 kbars for this crystalline 
system. The values of the slope, dPm/dT, which we deduced from our spectroscopic relation, are com-
pared with those obtained experimentally. In particular, our computed slope value for the pressure of 
5⋅02 kbar is in very good agreement with the empirical result. 
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1. Introduction 

Ammonia has been studied extensively and has a com-
prehensive body of literature, since it has various solid 
and liquid phases, and also a mixture of solid and liquid 
phases, as given in the P – T1,2 and V – T3 phase dia-
grams. There exist two triple points, where three phase 
lines intersect with one another; their coordinates are 
TG–L–I = 195⋅48 K (P = 0 kbar)+ between the gaseous, 
liquid and solid I phases, and TL–I–II = 217⋅34 K (P = 
3⋅07 kbar) between the liquid, solid I and solid II 
phases in ammonia. Solid I melts into a liquid state at 
the melting temperature Tm = 192⋅5 K (P = 0 kbar). As 
the pressure increases to 3⋅07 kbar, solid II melts into a 
liquid state at the melting temperature Tm = 222⋅4 K. 
At this pressure, solid I phase transforms into the solid 
II phase. There exists another solid phase (solid III) at 
35 kbar and 25°C, which has been observed experi-
mentally.2 We have considered these solid phases close 
to the melting point in ammonia; and using the mean 
field theory we have obtained P – T phase diagrams 
for both solid I and solid II phases,4 and also for the 
solid I–II–III phases.5 
 Various experimental techniques have been used 
to study phase transitions in ammonia close to the 
melting point. Regarding the crystal structures of 
ammonia solids, X-rays6 and neutron scattering7 

techniques have been used. By means of these tech-
niques, it has been reported that solid I has a simple 
cubic (sc) structure with four molecules per unit cell6–8 
and solid II has a hexagonal close-packed structure 
with two molecules per unit cell.9 Another solid phase 
of ammonia, solid III phase, has a face-centered cubic 
( fcc) structure and such a phase occurs in the solid 
II phase between 240 K and 300 K.2,9 
 Another experimental technique which has been 
widely used to explain the mechanism of phase trans-
formations in ammonia close to the melting point, is 
the Raman spectroscopic technique. For ammonia 
solid I, four translational and five rotatory lattice 
(librational) modes have been assigned in the Raman 
spectra. In particular, the frequencies of the transla-
tional modes of ~ 100 and ~130 cm–1; and the libra-
tional mode of ~ 280 cm–1, have been measured both 
at atmospheric pressure and at high pressures.3 Using 
the measured frequencies of the translational modes 
of ~ 100 and ~ 130 cm–1, and the librational mode of 
~280 cm–1,3 we have calculated the Raman frequen-
cies of these modes at various temperatures for pres-
sures between 0 and 3⋅07 kbars in ammonia solid I.10 
In this crystalline system, we have also calculated 
the Raman frequencies of these modes at various 
pressures, for fixed temperatures between 196 and 
217 K.11 
 For ammonia solid II, the Raman spectra have 
been obtained, and in particular, the frequencies of 
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the translational mode of ~ 54 cm–1, and the libra-
tional mode of ~ 280 cm–1, have been measured as 
functions of temperature for constant pressures of 
3⋅65, 5⋅02 and 6⋅57 kbars respectively.12,13 Using the 
measured Raman frequencies of the librational mode 
of ~ 280 cm–1, we have calculated the Raman fre-
quencies of this mode at various temperatures for 
those fixed pressures cited above,14 and as a function 
of pressure for the fixed temperatures of 230⋅4, 263⋅4 
and 297⋅5 K15 respectively, in ammonia solid II. 
 The critical behaviour of ammonia near the melt-
ing point has been investigated experimentally and 
cited in the literature.16,17 For ammonia solids I and 
II, we have theoretically investigated the critical behav-
iour by calculating the thermodynamic quantities, 
such as the specific heat Cp, thermal expansivity αp, 
and the isothermal compressibility κT.18 By consid-
ering the divergence behaviour of these quantities in 
ammonia solids I and II near the melting point, we have 
established two Pippard relations for these crystals.19 
 In the current study, we examine our spectroscopic 
modification of the second Pippard relation in ammonia 
solid II, which relates the thermal expansivity, αp, to 
the frequency shift (1/ν)(∂ν/∂P)T. For verifying this 
spectroscopic relationship, we have used our calculated 
frequencies of the rotatory lattice (librational) mode 
for fixed pressures of 3⋅65, 5⋅02 and 6⋅57 kbars in 
crystalline ammonia. The numerical values used in 
this study have been given as the SI equivalents.20 

 In §2, we provide the theoretical basis for calcu-
lating the thermal expansivity αp and the frequency 
shift (1/ν)(∂ν/∂P)T. In §3, our calculations and results 
are summarized; and we discuss our results in §4. 
Finally, our conclusions are given in §5. 

2. Theory 

The Pippard relation relates the thermal expansivity, 
αp, to the isothermal compressibility, κT, and can be 
written for ammonia solid II near the melting point as, 
 
 αp = (dPm/dT)κT + T(dV/dT)m. (1) 
 
Here dPm/dT is the slope in the P – T phase diagram 
of ammonia solid II and (dV/dT)m is the variation of the 
crystal volume with temperature at the melting 
point. The above relation can be modified spectro-
scopically by means of the γ-Grünesien relation de-
fined as, 
 

 γT = (1/κT)(1/ν)(∂ν/∂P)T. (2) 

On the basis of the assumption that the isothermal 
mode Grünesien parameter, γT, remains constant across 
the region from the solid II phase to the liquid phase, 
the frequencies can be predicted from the volume, 
according to (2). By considering the definition of iso-
thermal compressibility κT = –(1/V)(∂V/∂P)T, the 
frequency can be evaluated from the volume by in-
tegrating (2), which yields 
 
 νT(P) = ∆τ + A(T) + νmexp[–γTln(VT(P)/Vm)], (3) 
 
with additional terms ∆T and A(T). Here ∆T is defined 
as the order–disorder contribution to the frequency. 
It is non-zero for P > Pc, and is zero for P < Pc, where 
Pc denotes the critical pressure for ammonia solid II 
close to the melting point. In (3) the temperature–
dependent term A(T) can be defined as, 
 
 A(T) = a0 + a1(Tm – T) + a2(Tm – T)2, (4) 
 
where a0, a1 and a2 are constants, and Tm is the tem-
perature at the melting point. In (3) νm and Vm corre-
spond to the values of the frequency and the crystal 
volume respectively at the melting point. 
 In order to predict the frequencies of different 
modes in ammonia solid II near the melting point, 
according to (3) we require the values of the volume 
obtained at various pressures for constant tempera-
tures. These values can be obtained from the pres-
sure dependence of the isothermal compressibility, 
κT, according to the power-law formula, 

 κT = k(P – Pm)–γ, (5) 

due to Pruzan et al.16 In the above relation, γ is the 
critical exponent for the isothermal compressibility 
of ammonia solid II near the melting point and k is 
the amplitude. Such a power-law formula directly 
gives the pressure dependence of the solid volume, 

 Vs = Vcexp[–k(1 – γ)–1(P – Pm)1–γ], (6) 

where Vc is the critical volume that depends upon the 
temperature. 
 The temperature dependence of the crystal vol-
ume can also be obtained for ammonia solid II near 
the melting point by using the ratio,17 
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By inserting (7) into (6), we obtain the temperature 
dependence of the volume for ammonia solid II 
close to the melting point, 
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 Vs = Vcexp[–k(1 – γ)–1(dPm/dT)1–γ(Tm – T)1–γ]. (8) 
 
From this temperature-dependence of the solid volume, 
we can derive the temperature-dependence of the 
thermal expansivity, αp, 
 
 αp = k(dPm/dT)1–γ(Tm – T)–γ + (1/Vc)(dVc/dT). (9) 
 
Thus, by inserting (2) into (1) the frequency shifts 
(1/V)(∂ν/∂P)T can be obtained as a function of tem-
perature by means of (9). We then get, 
 
 αp = (1/γT)(dPm/dT)(1/ν)(∂ν/∂P)T + (1/V)(dV/dT)m. 

  (10) 
 
Equation (10) is our spectroscopically modified 
form of the second Pippard relation (1) for ammonia 
solid II in the vicinity of the melting point. Accord-
ing to (10), the thermal expansivity, αp, varies line-
arly with the frequency shift, (1/ν)(∂ν/∂P)T, close to 
the melting point in ammonia solid II. Thus, by plot-
ting αp against (1/ν)(∂ν/∂P)T, we are able to predict 
the slope, dPm/dT, and the intercept (1/V)(∂V/∂T)m at 
the melting point for ammonia solid II. 

3. Calculations and results 

In order to predict the frequencies as a function of 
pressure, at constant temperatures according to (3), 
we need to evaluate the solid volume VT(P). The 
calculation of VT(P) is done by means of (6), where 
VS is used for VT(P). In (6), the temperature depend-
ence of the critical volume Vc is taken as an empiri-
cal relation given by, 
 
 Vc(II) = VII – dII(T – TL–I–II), (11) 
 
due to Pruzan et al.16 By using the experimental val-
ues of VII = 21⋅13 cm3/mol, dII = 0⋅0146 cm3/mol K16 

with the triple temperature of TL–I–II = 217⋅34 K, the 
temperature dependence of the critical volume becomes, 
 
 Vc(II) = 24⋅30 – 0⋅0146T. (12) 
 
In order to obtain the temperature dependence of the 
thermal expansivity, αp, according to (9), we also 
need the temperature dependence of the slope dPm/dT. 
For this dependence we use an empirical relation,16 
 
 Pm(II) = 11⋅156[(T/TL–I–II)

1⋅516 – 1] + 3⋅07, (13) 

which gives us, 

 dPm(II)/dT = 4⋅854 × 10–3T0⋅516. (14) 
 
This allows us to determine the temperature depend-
ence of the thermal expansivity αp. By determining 
the frequency shift, (1/ν)(∂ν/∂P)T, and the thermal 
expansivity, αp, at various temperatures, we are able 
to examine the second Pippard relation in our modi-
fied version (10). 
 We have established here a linear variation of the 
thermal expansivity, αp, with the frequency shift 
(1/ν)(∂ν/∂P)T for the librational mode of ν (270 cm–1) 
in ammonia solid II. We obtained this linearity for 
three constant pressures, namely, 3⋅65, 5⋅02 and 
6⋅57 kbars, in this solid system close to its melting 
point. By means of the linear relationship between 
αp and (1/ν)(∂ν/∂P)T, we are able to deduce the val-
ues of the slope dPm/dT for the pressures indicated 
above in ammonia solid II. 
 For calculating the thermal expansivity, αp, according 
to (9), we use the values of the critical exponent 
γ = 0⋅60 and amplitude k = 0⋅0135, which are deduced 
from the compressibility data according to (5) due to 
Pruzan et al16 for ammonia solid II. For this calculation, 
we also need the variation of the critical volume 
with the temperature, dVc/dT, which is obtained from 
the empirical relation (12) due to Pruzan et al.16 The 
values of (1/Vc)(dVc/dT) are obtained at the melting  

 

Table 1. Values of coefficients ∆T + a0, a1 and a2, determined from (3), using Raman frequencies of the 
librational of ν (270 cm–1) and volume data for ammonia solid II for the indicated pressures. 
Values of volume, Vm, and the Raman frequency, νm, for the librational mode at the melting temperatures, 
Tm, are taken from our previous study.14 Values of variation of the critical volume (Vc) with temperature, 
(1/Vc)(dVc/dT), are obtained from (2). 

P Tm Vm νm (1/Vc)(dVc/dT) ×  ∆T + a0 –a1 a2 
(kbar) (K) (cm3/mol) (cm–1) 10–4 (K–1) (cm–1) (cm–1 K–1) (cm–1 K–2) 
 

3⋅65 225⋅0 20⋅82 267⋅4 6⋅95 0⋅6456 0⋅1695 –0⋅0107 
5⋅02 242⋅0 20⋅56 265⋅0 7⋅03 13⋅0854 0⋅4450 0⋅0051 
6⋅57 260⋅3 20⋅27 266⋅8 7⋅12 14⋅4053 0⋅2167 0⋅0016 
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temperatures of 225, 242 and 260⋅3 K for pressures 
of 3⋅65, 5⋅02 and 6⋅57 kbars respectively in ammonia 
solid II, as given in table 1. Thus, with these values, 
the thermal expansivity, αp, is calculated as a function 
of temperature for fixed pressures of 3⋅65, 5⋅02 and 
6⋅57 kbars, according to (9) in ammonia solid II. 
 The Raman frequency shifts (1/ν)(∂ν/∂P)T are 
also calculated at various temperatures, for the libra-
tional mode of ν (270 cm–1) for pressures 3⋅65, 5⋅02 
and 6⋅57 kbars in ammonia solid II. For this, we first 
calculate the Raman frequencies as a function of 
temperature using observed data for the Raman fre-
quencies of the librational mode of ν (270 cm–1) and 
for the volume as initial data (cf. (3)). These initial 
data were used to determine the coefficients ∆T + a0, 
a1 and a2 in (4), with the values of the volume Vm 
and the Raman frequency νm of the librational mode 
at the melting temperatures for pressures of 3⋅65, 
5⋅02 and 6⋅57 kbars in ammonia solid II. Our calculated 
values of the coefficients ∆T + a0, a1 and a2 are given 
in table 1, together with the Vm and νm values at the 
melting temperatures Tm, for the pressures considered. 
The Raman frequencies of this librational mode are 
then calculated using (3), with these values of the 
coefficients ∆T + a0, a1 and a2 and using the values 
of volume VT(P) for each pressure condition, namely 
3⋅65, 5⋅02 and 6⋅57 kbars in ammonia solid II. In 
(3), we use γT = 0⋅9 as the value of the mode Grüne-
sien parameter for the librational mode in ammonia 
solid II.13 By obtaining the values of the frequency 
shifts (1/ν)(∂ν/∂P)T for the librational mode, and us-
ing our calculated values of the thermal expansivity, 
αp, at different temperatures, we are then able to esta-
blish linear plots for pressures of 3⋅65, 5⋅02 and 
6⋅57 kbars. Figures 1–3 give the thermal expansiv-
ity, αp, plotted against the Raman frequency shift  
(1/ν)(∂ν/∂P)T for the librational mode in ammonia 
solid II for pressures of 3⋅65, 5⋅02 and 6⋅57 kbars re-
spectively. For pressures of 3⋅65 kbar (figure 1) and 
5⋅02 kbars (figure 2), we calculate additional data 
points, apart from the calculated for temperatures at 
which the Raman frequencies of the ν (270 cm–1) 

mode are measured.13 Again, calculated values for 
the thermal expensivity, αp, are obtained from (9) and 
values for the frequency shift, (1/ν)(∂ν/∂P)T, are cal-
culated by means of (3). Using all of the data for pres-
sures of 3⋅65, 5⋅02 and 6⋅57 kbars, best-fit lines are 
obtained using (10). Based on these plots, we obtain 
the values of the slope, dPm/dT, for the pressures 
studied, as given in table 2. The values of dPm/dT, 
which are obtained from the empirical relation (14), 
are also given in table 2 for comparison. In addition, 
the intercept values of our plots, (1/Vm)(dV/dT)m, are 
also given in table 2 for the pressures considered. 
 As given in figures 1–3 and in table 2, we also calcu-
late the uncertainties in the slope, dPm/dT, for the 
three pressures studied. Uncertainties in dPm/dT vary 
from ± 0⋅4 bar/K (3⋅65 kbar) to ± 0⋅2 bar/K (5⋅02 
and 6.57 kbars). In order to calculate these uncer-
tainties in dPm/dT according (10), we first calculate 
uncertainties in the thermal expansivity, αp, and in 
the frequency shift, (1/ν)(∂ν/∂P)T, for the lattice 
mode studied for pressures of 3⋅65, 5⋅02 and 
6⋅57 kbars in ammonia solid II. 
 Starting from uncertainties in the volume meas-
urements VII = 21⋅13 ± 0⋅02 cm3/mol and dII = 0⋅0146 ± 
0⋅0002 cm3/mol K,16 we determine uncertainties in 
the critical volume, Vc(II), according to (11). Also, 
using the value of the critical exponent, γ = 0⋅60 ± 
0⋅01, from (5), which is fitted to the experimental 
data for the isothermal compressibility, κT, in am-
monia solid II,16 we are able to calculate the uncer-
tainty in αp, according to (9) for pressures studied in 
this crystalline system. 
 In order to determine the uncertainty in the fre-
quency shift (1/ν)(∂ν/∂P)T, for pressures of 3⋅65, 
5⋅02 and 6⋅57 kbars, we first determine the uncer-
tainties in the Raman frequency νT(P) of the lattice 
mode in ammonia solid II using (3). For this deter-
mination, we calculate uncertainties in the crystal 
volume, Vs, by using uncertainties in Vc and γ in (6). 
We then obtained uncertainty in the Raman frequen-
cies (3) for the lattice mode in ammonia solid II. 
Once we determine the uncertainties in the Raman 

 
 

Table 2. Values of slope dPm/dT, deduced from the second Pippard relation (10) vs those obtained ex-
perimentally by (4) for indicated pressures. 
Intercept values of (1/Vm)(dV/dT)m from (10) are also tabulated here. 

P (kbar) Tm (K) Calc. dPm/dT (bar/K) Obs. dPm/dT (bar/K) (–1/Vm)(dV/dT)m × 10–4 (K–1) 
 

3⋅65 225⋅0 60⋅0 ± 0⋅4 79⋅4 2 
5⋅02 242⋅0 84⋅0 ± 0⋅2 82⋅4 7 
6⋅57 260⋅3 90⋅5 ± 0⋅2 85⋅6 8 
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frequencies νT(P), we are able to calculate uncertainties 
in the frequency shift, (1/ν)(∂ν/∂P)T, at different 
temperatures for constant pressures of 3⋅65, 5⋅02 and 
6⋅57 kbars in ammonia solid II. We report these un-
certainties in both αp and (1/ν)(∂ν/∂P)T for each 
pressure condition, namely, 3⋅65, 5⋅02 and 6⋅57 kbars, 
in ammonia solid II as shown in figures 1–3 respec-
tively. 

4. Discussion 

Our spectroscopic modification of the Pippard rela-
tion (10) proves that the thermal expansivity, αp, 
varies linearly with the Raman frequency shift 
(1/ν)(∂ν/∂P)T, for the rotatory lattice (librational) 
mode of ν (270 cm–1) in ammonia solid II. As seen 
in figures 1–3, we obtain this linearity for the three 
pressures considered, namely, 3⋅65, 5⋅02 and 6⋅57 kbars 
respectively. As we noted earlier, the validity of our 
Pippard relation (10) is based on the fact that the 
thermal expansivity, αp, and the frequency shift (1/ν) 
(∂ν/∂P)T, exhibit similar critical behaviour near the 
melting point in ammonia solid II. In this study, we  
 
 
 

 
Figure 1. Thermal expansivity, αp, as a function of the 
Raman frequency shift (1/ν)(∂ν/∂P)T, for the librational 
mode ν (270 cm–1) in ammonia solid II for a pressure of 
3⋅65 kbar (Tm = 225 K), according to the second Pippard 
relation (10). 

have concentrated on the critical behaviour of the 
frequency shifts for the rotatory lattice mode of ν 
(270 cm–1) in ammonia solid II. This leads us to es-
tablish (10), using our calculated Raman frequencies 
for this lattice mode, from which we extract the val-
ues of the slope dPm/dT for the pressures considered, 
as given in table 2. Our value of 60 bar/K for 
P = 3⋅65 kbar is too low in comparison with the experi-
mental value of 79⋅4 bar/K, which we obtain from 
the empirical relation (14). However, our values of 
84 bar/K and 91 bar/K for pressures of 5⋅02 and 
6⋅57 kbars respectively are close to the observed 
values (table 2). In particular, our value for 
P = 5⋅02 kbar is very close to the experimental value 
of 82⋅4 bar/K. Our calculated and observed values of 
dPm/dT increases as the pressure increases, as ex-
pected (table 2). 
 In order to examine the range of variation in the 
slope, uncertainties in dPm/dT are calculated, which 
are quite small, as given in table 2. This is due to the 
fact that uncertainties in the thermal expansivity, αp, 
and in the frequency shift, (1/ν)(∂ν/∂P)T, are very 
small, as shown in figures 1–3. For P = 3⋅65 kbar  
 
 

 
Figure 2. Thermal expansivity, αp, as a function of the 
Raman frequency shift (1/ν)(∂ν/∂P)T, for the librational 
mode ν (270 cm–1) in ammonia solid II for a pressure of 
5⋅02 kbar (Tm = 242 K), according to the second Pippard 
relation (10). 
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Figure 3. Thermal expansivity, αp, as a function of the 
Raman frequency shift (1/ν)(∂ν/∂P)T, for the librational 
mode ν (270 cm–1) in ammonia solid II for a pressure of 
6⋅57 kbar (Tm = 260⋅3 K), according to the second Pip-
pard relation (10). 
 
 
(figure 1), uncertainties in αp, and in (1/ν)(∂ν/∂P)T, 
increase proportionately, as the temperature approaches 
the melting temperature (Tm = 225 K). For example, 
this increase in uncertainty for both αp and (1/ν) 
(∂ν/∂P)T is about twice as large close to Tm (at 
224⋅1 K) in comparison with that at 223⋅5 K (figure 1). 
However, for pressures of 5⋅02 kbar (figure 2) and 
6⋅57 kbar (figure 3), uncertainties in αp and in (1/ν) 
(∂ν/∂P)T seem to increase as the temperature goes 
below the melting temperatures. 
 We also calculate uncertainties in (1/V)(dV/dT)m 
at the melting temperature, which is the intercept of 
(10). Our calculated values of (1/Vm)(dV/dT)m devi-
ate from the values given in table 2 by about 
0⋅5 × 10–4 K–1 for pressures of 3⋅65 kbar (figure 1) 
and 6⋅57 kbar (figure 3) and there is no deviation for 
5⋅02 kbar (figure 2). These uncertainties in (1/Vm) 
(dV/dT)m are calculated from (10) by using uncer-
tainties in αp and (1/ν)(∂ν/∂P)T, which we have al-
ready determined. 
 In our spectroscopic modification of the Pippard 
relation (10), we also assume a constant value for 

the isothermal Grünesien parameter, γT, for the rota-
tory lattice mode (γT = 0⋅9) across the phase transi-
tion region. This indicates that the anharmonicity of 
the ammonia system does not change under various 
temperature and pressure conditions. In fact, in gen-
eral, the mode Grünesien parameter is dependent 
upon the temperature and pressure. It has been re-
ported in earlier studies2,16 that the compressibility, 
κT, shows anomalous behaviour in ammonia solid II 
near the melting point. We have reported in our pre-
vious study14 that our calculated Raman frequencies 
for the rotatory lattice (librational) mode show no 
anomaly near the melting point in ammonia solid II, 
as has also been indicated using the measured Raman 
frequencies for this mode.13 Since we are concerned 
here with the derivative of the Raman frequency, the 
Raman frequency shift (1/ν)(∂ν/∂P)T, does exhibit 
divergence behaviour close to the melting point. Alter-
natively, by considering the temperature and pres-
sure dependence of the mode Grüneisen parameter, 
γT, the divergence behaviour of the Raman frequency 
shift, (1/ν)(∂ν/∂P)T can be modified to satisfy our 
spectroscopic relation (10), which might then yield 
improved values for the slope, dPm/dT, and agree 
better with the empirical data (cf. table 2). 

Conclusions 

The thermal expansivity, αp, varies linearly with the 
Raman frequency shift (1/ν)(∂ν/∂P)T, in ammonia 
solid II near its melting point. Such linearity is obtained 
for the rotatory lattice mode of the crystal for pressures 
of 3⋅65, 5⋅02 and 6⋅57 kbars. This behaviour shows 
the validity of our spectroscopic modification of the 
Pippard relation applied to the librational mode 
studied in ammonia solid II for the cited pressures. 
By means of the relationship introduced here, we are 
able to explain the observed behaviour of ammonia 
solid II in the vicinity of its melting point. 
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